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A Novel Approach to the Design of
Multiple-Probe High-Power Microwave

Automatic Impedance Measuring Schemes

CHIA-LUN J. HU

Abstract-Starting with a moWed look at the phssor diagram of a

multiple-probe system on a Inssleas wavegufb one can attain a geOnetri-

caf method for designing various direct-reading microwave fmpe&w-

meaanring schemes using fixed probe. This geometrical method wiff

bypass a signifkant amount of atgebraic complexity as encountered in

classical algebraic methods. Hence it altowa one to visualize the physical

pietnre more clearly aad guides one to mwlify the design more effectively

to meet higher performance demands. This article reports a trend of deidgn

developments derived from this new point of view. It starts with the

anatysis of a two-probe system for measuring an onknown fnqredanee Z.

Tbfs is followed by modifications on the design guided by the new

geometrical technique. Finally, two practical designs are derived for mea-

suring ~ unknown microwave impedance autoomticafly. One is to be used
under fried-freqrrency, swept-power eondftio% and the other, under

swept-frequerrey, swept-power eondftiona. These systems require onty inex-

pensive Iow-freqneney signaf procesao m (either analog or digitaf) and fifed

muftiple probes. The output can be either analog with polar display or

digitaf with accurate readonts. To the author’s krrowl~ thins designs

Manuscript received March 27, 1980; revised August 26, 1980. Patent
application for the new designing method and the new schemes reported
in this paper is in progress.

The author is with the Department of Electrical Engineering, Urriver-
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have not been derived in the paat using multiple probes. A criticaf review

on alf multiple-probe systems reported in the literature is also dkcumed

with theii comparison to the present system.

I. INTRODUCTION—BACKGROUND SURVEY

M ULTIPLE PROBES mounted on a Iossless wave-

guide terminated by an unknown impedance 5

have been used or proposed ‘by many investigators to

obtain data for calculating both phase and magnitude of

the unknown complex F. Samuel in 1947 [1] used two pairs
of equidistant ( Ag/4) probes interlaced by Ag/ 8 to mea-

sure and to display the impedance on an oscilloscope. He

applied VI – V3 and P’z– Vd to the vertical and horizontal

inputs of an oscilloscope, respectively, where VI, Vz, V3, VA

are square-law diode outputs from the probes. Although

in his measurements the frequency was varied such that

the impedance was traced as a curve on the oscilloscope,

his scheme was actually derived from fixed-frequency

assumptions. That is, he assumed that the angular dis-

tance between any adjacent probes is always kept at Ag/8
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even when the frequency is swept. Ginzton reported in his

book [2] an unpublished scheme used in 1945 by G. H.

Taylor which is physically similar to Samuel’s scheme—

four equidistant probes separated by Ag/8. But he used

the ratio of, not the difference between, the probe-detected

outputs to calculate the Z A chart was made for reading

out the unknown i? from these ratios detected at a fixed

frequency. Duffin in 1952 [3] published still another simi-

lar scheme using three fixed probes separated by Ag/8.

He then derived algebraically a set of equations for calcu-

lating the magnitude of Z and the imaginary part of Z from

the probe detected data V,/ V2 and V3/ V2. Again, be-

cause of the restriction of Ag/ 8 between adjacent probes,

this scheme is also restricted to fixed-frequency measure-

ments. In 1952, King [4] generalized the Taylor’s four-

probe scheme by analyzing the ratio between the outputs

VI, V2 of two fixed probes arbitrarily spaced. He proved

algebraically that when this ratio is fixed, the trajectory of

Z on a Smith chart is a circle. He then derived a four-probe

scheme which is quite similar to the one discussed in

Ginzton’s book. In 1962, Chamberlain et al. [5] proposed

a scheme using three equidistant probes with arbitrary

spacing between the probes. He then arrived at a set of

equations for calculating Z from the probe outputs at a

fixed frequency. But when he proposed a signal-processing

system to calculate the unknown Z from the probe out-

puts, he missed a very important point—he neglected the

phase distance between the loading point and the

probes—which will lead to serious errors in the measure-

ments. Hence, his scheme was never reported in the

literature to show successful measurements. This point

can be clearly seen from the geometrical method dis-

cussed in Section II when we design the fixed-frequency

scheme.

Since 1962, there has been hardly any significant publi-

cation concerning multiple-probe schemes. A probable

reason for this is that all the above investigators used

algebraic methods to analyze the multiple-probe systems.

These methods become very complicated when the probe

separation is arbitrary and when the frequency is swept.

Hence, most of these schemes are restricted to simple

probe separations, for example, Ag/8. Consequently, most

of these systems can only be used at a single “design

frequency,” On the other hand, we will see from Section

II that the fixed-frequency scheme reported in this article

is usable at any other fixed frequency after a simple

calibration. The reason that this and other more versatile

designs can be reached here is that a new method of

design derived from a paper published by this author in

1979 [6] bypasses this mathematical difficulty and pro-

vides more perceptive pictures and easier ways to design

the system. In the following, we will start with a modified
look at the phasor analysis and from there we will derive a

geometrical method, in contrast to the algebraic methods

reported in the literature, for analyzing the .Zversus probe-

output relations.
Finally, two new practical designs are described. One is

a fixed- (but adjustable) frequency, swept-power Z measur-

ing scheme. The other, a swept-power, swept-frequency, Z

Fig. 1. A two-probe system for measuring Z.

Fig. 2. Modified phasor diagram for Fig. 1,

measuring scheme. Both can be used at low and high

power levels.

II. GEOMETRICAL APPROACH ~

FIXED-FREQUENCY, SWEPT-POWER,

DIRECT-READING, Z MEASURING SCHEME

If a lossless waveguide is connected between an un-

known impedance Z and a generator G, and if two fixed

probes 1,2 are used to sample the E fields in the wave-

guide as shown in Fig. 1, then in principle, one can

calculate both the magnitude and the phase of Z from the

sampled field strengths El, E2 (or E:, E: if square-law

diodes are used) as shown in the modified phasor diagram

of Fig. 2. In this figure, we have normalized the scale such

that the forward-wave field in the waveguide is always

represented by a unit-length phasor, and particularly, the

forward field Ef at the load~g point L is represented by

the horizontal unit phasor LO. Then, if the reflected field

at the loading point is represented by OR, we can keep ~

fixed (in contrast to the conventional phasor analysis that

one usually keeps the forward field ~ fixed), and rotate

~ clockwise to ~ with arc L1 equal to 2@l where ~11 is

the one-way phase difference between point 1 and point L

in Fig. 1. The magnitude of the phasor ~-m+ ~ a

(forward field+ reflected field),, ,,.,., will then be equal

to El as detected by probe 1. Similarly, the magnitude of

~ will be equal to E2 as detected by probe 2. Now since

points L, 1,2 are fixed on the circle, and El, E2 are mea-

sured, point R, or the reflected field ~ at the loading

point, can be determined geometrically.1 This reflected

field ~ should be equal to the complex reflection coeffi-

cient ~ at the loading point since the forward field fi at

the loading point is normalized to unity. Consequently, ~

at the loading point can be determined geometrically

when El, E2 are measured from the probe outputs. Now,
if this phasor diagram is superimposed on a Smith chart

with the chart scaled and oriented in such a way that the

1The geometrical problem here is the foflowing. Given two fixed
points 1, 2 aid two fixed distances Ilk,??l, 2R=E2, find the anknown
point R. The way to solve this is to draw two circles with centers at
points 1, 2 and radii El, E2. The intersecting point R of these two circles
is the anfmown point R we want.
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Fig. 3. Uniqueness ambiguity for the two-probe system.

Fig. 4. A three-probe fixed-frequency z measuring scheme.

Fig. 5. Removal of the uniqueness ambiguity in the three-probe sys-
tem.

circumference of Fig. 2 coincides with the circumference

of the chart and the x–y coordinate in Fig. 2 coincides

with the rectangular coordinate in the Smith chart, then

the ~ in Fig. 2 is just the ~ used in the Smith chart.

Consequently, the impedance read off on the chart under

point R (the tip of ~ in Fig. 2) will be equal to the

unknown impedance Z because the Smith chart is just a

transformation from I to Z.

While this system for measuring Z appears to be simple

enough, there exists a uniqueness problem in the measure-

ments. Two circles will generally intersect at two points

and if the two intersecting points R and R’ of the two
intersecting circles happen to fall inside3 the unit circle, as

shown in Fig. 3, thea two reflection coefficients ~ and ~

or two possible unknown impedances 7 and Z’ will be

obtained from only one set of probe outputs El, E2.

Consequently, this two-probe system may give double

values for E under one set of measured probe data.

To remove this uniqueness ambiguity in the measure-

ments, we can add a third probe to the system as shown in

Fig. 4. The modified phasor diagram (similar to that of

Fig. 2) for this three-probe system is shown in Fig. 5,

where e ~,e2, e3 are the nor-mal~ed total fields m~asuled

by probes 1, 2, and 3, respectively. (That is, e]= IJ%/Ef 1,

2X, Y axes in Fig. 2 are the real and imagimry axes for expressing the
complex number k because the ufit phasor zf (Or Lo) in F@ z is do%

the positive x (real) direction. Hence Ef expressed ~ this x (re@-y
(imaginary) coordinate is just 1+jQ, which is the reference phasor
required for expressing the complex k.

3If one intersecting point is inside the unit circle and one is outside,
then the ~ corresponding to the one outside the unit circle will have a
magnitude greater than unity which cannot be true for a passive load
because I~[ <1 must hold for a passive load. Therefore, only the inter-
secting point inside the unit circle can give us correct Z, or the solution is
unique only if one intersecting point is inside the circle.

VERTICAL DIRECTION

v OF THE OSCILLOSCOPE

2i31,

HORIZONTAL DIRECTION
“ OF THE OSCILLOSCOPE

ANGLE OF ROTATION OF
THE SMITH CHART =12’OL

Fig. 6. Modified phasor diagram for calculating z from probe outputs

el, e2, e3.

etc., and ~f is the forward field at the loading point.) We

can see immediately now that the ambiguity of the double

solutions in Fig. 3 does not exist here anymore. Because

of the geometry of Fig. 5, we can see that a fixed-length e3

will allow only one point to be selected from the double

points R, R’ shown in Fig. 3 for determining the unknown

~. That is, three fixed distances IR ~el, 2R = ez, 3R = eB

from three fixed points 1,2,3 will determine the position

of the unknown point R uniquely in the plane.4 Therefore,

only one ~ or one Z can be determined from one set of

probe outputs e ~,e2, e3.

Now we would like to make a practical design based on

this three-probe system. That is, we would like first to

calculate ~ at the loading point analytically in terms of

el, e2, e3 and then to design some signal processors to

carry out this calculation and transform this calculated ~

into Z automatically. In the following, we will first calcu-

late the components of ~ in terms of e,, e2, e3 using some

geometrical means. To simplify the calculation, let us

assume that 12=13 in Fig. 4 such that in the modified

phasor diagram of Fig. 6, arc 12= arc 23-0. Let us then

draw a rectangular coordinate axes U–V with W coincid-

ing with ~ as shown in Fig. 6. Then the components

kU, kO of ~ expressed in this coordinate system can be

calculated from e ~,e2, e3 by noting that the vector equa-

tion ~– ~= ~ is equivalent to the algebraic equation

(Ati –BU)2 +(AO –BO)2 = \C\2. With this equation, we

see that the three vector equations ~ – OR =—— —— .— —
Rl, 02 – OR = R2, 03 – OR = R3 shown in Fig. 6 are equiva-

lent to the following algebraic equations, respectively:

(cos 0–kU)2+(sin0–kO)2 =e~ (1)

(1–kti)2+k~=e~ (2)

(cos 0–kU)2+(–sinO–kO)2 =ef. (3)

kU, kO can then be solved by applying the operations

(1) +(3) – 2(2), and (3) – (1) to these equations, with the

4There must, of murse, exist a certain restra~t among e1,e2, e3
because this is an overdetermined system. Three fixed distances from
three fixed points are actually more than those required to determine the
position of the unknown point R in the plane. But this “oversupply” of
data will remove the double-solution ambiguity as shown in Fig. 5.
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Fig. 7. A practieaf three-probe system for automatic Z measurements
at fixed frequencies.

following:

kU =
ef +e~ –2e~

=Ati(v, +V* –2V3)
4(1–COSO)

(4)

e; –e:
kO=—

4 sin O
=AO(V3– V1) (5)

where ~ -e,z are the square-law diode outputs from the

probes and AU, AO are two proportional constants if O or

the frequency j(O - 2@= (47rl/ Vg)j ) is kept unchanged in

the measurements.

Now if we design two signal processors to process the

probe outputs Vl, Vz, V3 according to (4), (5), and if the

output voltages ka, kc of these two processors are con-

nected, respectively, to the horizontal and the vertical

inputs of an oscilloscope as shown in Fig. 7, then the

displacement of the beam spot on the scope will be——
proportional to phasor ~-~ in Fig. 6 when OU,OV in

Fig. 6 are taken, respectively, as the horizontal and the

vertical directions of the scope. Thus with a proper

calibration and with a Smith chart properly oriented and

overlayed on the scope, we can use this displayed ~ to

read the unknown Z directly from the Smith chart. Notice

that it is =, or ~, not ~U, @ Fig. 6 that must coincide

with the horizontal axis of the Smith chart, because ~, or

the reflected field ~, at the loading point, can be taken as

~ only when LO, or the forward field ~f at the loading

point, is taken as unity as shown in Fig. 6. Therefore, Z

can be read off directly from the Smith chart overlay only

when this chart is rotated from the horizontal axis ~U by

an angle equal to Z 2’OL as shown in both Figs. 6 and 7.5

To calibrate this system, we need to connect a sliding

short to the loading point L of Fig. 4. We can then adjust

the ampliier gains AU, AO in Fig. 7 such that when the

system is in calibration, the beam spot on the scope will

trace a curve exactly along the circumference of the Smith

chart as the sliding short is moved in and out. This is so

because Z= O on the Smith chart is equivalent to point L

5Chamberlain’s scheme discussed in the Introduction (Section I) is
very similar to the three-probe scheme discussed here. His equations (6),
(7) are exactly the same as (4), (5) derived here, except that he did not
take the phase distance between the loading point and the central probe
into account. This phase distance is equaf to 2~(11 +12)= n – L 2’OL in
Fig. 6 here, and Z 2’OL is the angle of rotation of the Smith chart as
deseribed in the text. Consequently, Chamberlain’s proposed scheme
(never carried out experimentally) would not work in general for correct
measurements of z if the rotation of the Smith chart were not carried
out.

in Fig. 6 (F= O means that ~,= – ~f or point R coincides

with point L in Fig. 6) and adjustment of the sliding short

is equivalent to the adjustment of L 2/31, in Fig. 6. This, in

turn, is equivalent to the adjustment of the angle of

rotation of the Smith chart or adjustment of L 2’OL~ ~ –

O– 2/311= constant – 2@1. Consequently, when the chart is

fixed in place, adjustment of the sliding short will move

the beam spot along the circumference of the Smith chart

if the system is in calibration.

Notice that after this calibration process, we do not

have to normalize the probe outputs against the forward

field ~f if the output power of the generator is very stable.

However, if the generator output power is not stable, such

that the forward field at the loading point during calibra-

tion is not the same as that during the Z measurements, or,

if we intend to sweep the power level for nonlinear Z

measurements, then we need to normalize the probe out-

puts. That is, we should use a directional coupler (or a

magic T as used in the swept-frequency scheme discussed
later in Section III) to sample the forward field ~f or the

square of the forward field E; - ~ if a square-law diode is

used. We should then use this Vf to divide all probe

outputs VI, V2, V3 by means of analog dividers. The out-

puts of these dividers are then the “normalized” probe

outputs which should be constants and not be affected by

power fluctuation or sweeping of the power level when Z

and frequency are unchanged. Consequently, the Z mea-

surements will not depend on the power level when these

normalized probe outputs are used. The system can then

be used as a swept-power, fixed-frequency, direct-reading,

F measuring scheme reusable at any fixed frequencies.c

111, SWTEPT-FREQmNCY, SWEPT-POWER,

DIRECT-READING, IMPEDANCE-MEASURING Scmmm

If we can express components kX, kY [where x, y are the

horizontal (real) and the vertical (imaginary) axes of the

Smith chart] of the loading point reflection coefficient ~ in

terms of the probe outputs ei independent of O or frequency

~(0-(47rl/ ~)~), then we can design two signal processors
to calculate these kX, kY in terms of the probe outputs ei.

The outputs kX, kY of these processors can then be ap-

plied, respectively, to the horizontal and the vertical in-

puts of an oscilloscope. A Smith chart can be overlayed

on the scope in such a way that x, y axes of the Smith

chart coincide with the horizontal and the vertical direc-

tions of the scope, respectively. The beam spot on the

Smith chart will then indicate automatically the value of

the complex Z at any frequency f if the scope is properly

calibrated. Consequently, in order to build a swept-

frequency F measuring scheme, we need to modify the

probe arrangement such that kX, kY can be expressed

directly as functions of probe outputs independent of the
frequency. To eliminate this frequency dependence, we

%hen frequency changes, O or the proportional constants AU, AO in
(4), (5) will change. Therefore, a recalibration of the system by varying
the ~plifier gains ,4U,A. in Fig. 7 must be carried out for correct z

measurements at this new frequency.
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Fig. 8. Modified phasor diagram for the four-probe swept-frequency
scheme.

can add a fourth equidistant probe to the three-probe

system previously discussed and obtain from the probe

outputs ez, es, ed another set of equations similar to (4), (5).

If O can be eliminated from these two sets of equations,

the components of ~ can be expressed directly in terms of
outputs e ~,ez, es, el of these probes without going through

O or f. The following design analysis is based on this point

of view.

First, we notice that in the modified phasor diagram

(Fig. 8), L1 = 12 = 23 =24 = 34 = O because of the equidis-

tance probes we used. Let us then define two rectangular

coordinate systems U–V and U’-V’ such that fi coin-

cides with ~ and OU’ coincides with ~ as shown in Fig.

8. Then as we have seen, expres~ed in the U–V coordinate

system, components ku, kv of k at the loading point are

functions of e,, ez, es, and O shown by (4), (5). Sirnilarl~

expressed in the u’-o’ coordinate, components k:, k; of k

can be calculated by the following equations which are

obtained from (4), (5) by replacing indices 1,2,3 with

2,3,4:

k;=
e: +e~ —2e~

4(1– COSO)
(6)

(7)

Now since kU, kO and k;, k; are related by a rotation of

coordinates implemented by the following equations:

k~=kUcos O–kOsin O (8)

k~=kUsin O+kOcos O. (9)

The angle 0, or cos /3, can be solved in terms of e,, ez, e~, ed

by substituting (4)-(6) into (8). Therefore, kU, kO in (4), (5)
can be expressed in terms of e,, ez, ej, e~ only, indepen-

dently of 0. These kU, k. can be rotated to kX, kY in the

x–y coordinate (the Smith chart coordinate) by the follow-

ing equations of rotation, with angle of rotation equal to

T – 20 as shown in Fig. 8:

kX = –kUcos2t?-kOsin29 (lo)

kY =kvsin29–kOcos29. (11)

Then we have kX, kY, the real and imaginary components

of ~ at the loading point expressed explicitly in terms of

probe outputs e, independent of 8 or frequency f as shown

by the equation set (9) below:

kX =kU(l–2cos20)– ~COSr9

22

kY =2kusinOcos9+ -(1–2cos20)

where

22
ku=% +e3 –Ze:

4(1– COSO)

sin O=~l–cos2/3 .

(9-1)

(9-2)

(9-3)

(9-4)

(9-5)

It then appears to us that these equations may be used

directly to design signal processors for calculating kX, kY
from e,, e2, e3, ed in a swept-frequency .2 measuring

scheme. But unfortunately there again exist three practical

problems. First, actually there should be f signs in front

of the square root of (9-5), or uniqueness ambiguity may

again arise. Second, when sin O in (9-2) or (1 – cos O) in

(9-3) equals zero, the mathematical expression becomes

indefinite and not suitable for any signal processors. Third,

when e2 = es, cos 6 in (9-4) becomes indeterminable. How-

ever, all these difficulties can be overcome as explained in

the following.
First, if we choose the separation 1between the adjacent

probes short enough such that 0<0< T when frequency is

swept in the designated frequency range of the waveguide,

then sin O is always positive and greater than zero. There-

fore the “+” sign of (9-5) should always be chosen as

shown. Also sin O and (1 – cos 0) will never be equal to

zero so that the second handicap will not occur under this

choice of 1. As to the third difficulty, we see from the

geometry in Fig. 8, that if e2 = e3, R point is on the

dividing line of L 203, or Z 104. Therefore, e, = ed must

also follow. Consequently, (9-4) becomes an indetermi-

nant form of 0/0. This is not suitable for any signal

processor. But it can be overcome by the following mod-

ification. Suppose we add still another equidistance probe,

probe 5, to the system as shown in the upper part of Fig.

9, then when e2 = e3 occurs, we can calculate /3 from the

outputs of e2 to es instead of e ~ to ed. Because by the

geometry of Fig. 8, if R happens to fall on the dividing
line of L 203, it will never fall on the dividing line of

Z 304. Therefore, e3 # eq and cos O can be calculated by

e~-1-e~-e~-e~
Cos e =

2(e~–e~]

instead of that given by (9-4). This switching action can

be implemented by the comparator and the analog

switches shown in the lower part of Fig. 9. When e2 – e3

approaches zero, the comparator will yield an output

signal “hi~ to activate all the analog switches such that
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Fig. 9. A practical system for automatic .7 measurements at swept
frequencies and swept powers.

the cos 8 processor will process the inputs from ez to es

instead of el to eq. The rest of the calculation or the data

processing are straightforward by following the other four

equations in (9). The outputs kX, kY of the second processor

in Fig. 9 can then be directly connected to the display

oscilloscope as shown in the lower part of Fig. 9 where the

x axis or ~ in the Smith chart is set such that it

coincides with the horizontal axis of the oscilloscope. This

is a system capable of measuring Z automatically when

frequency f is swept, because after a proper calibration,

the displacement of the beam spot on the scope is equal to

the ~ at the loading point under any frequency. Therefore,

the Z at any swept frequency can be read off directly from

the Smith chart.

To calibrate the system, we should first understand the

normalization process used in the system. The magic T

and probe 6 in the upper part of Fig. 9 are used for

normalizing the probe outputs as explained in the follow-

ing. The forward wave F coming from the generator will

be divided equally between arms az, a~ of the magic T,

but the reflected wave R from az arm will not go into aq

because of the scattering property of the magic T. Hence

Vbs ~ will indirectly monitor the forward wave in the

main guide. Consequently, Vb can be used to normalize all

probe outputs in the main guide by analog dividers as

shown in the lower part of Fig. 9. A directional coupler is

not recommended for monitoring the forward wave be-

cause its frequency response does not match that of the

probes when the frequency is swept. On the other hand,

the frequency response of V~ in arm ad shown in Fig. 9
should be exactly the same as those of V, to V5 in arm az

because of the geometrical symmetry of the magic T.

Therefore, the normalization process here should be quite

independent of the frequency as well as the power when

the frequency or the power is swept. Consequently Fig. 9

is a swept-frequency, swept-power, direct-reading, Z mea-

suring scheme.

To calibrate the system, we need to use a reflectionless

load connected to the loading point and adjust the probe

sensitivities as well as the divider amplification factors,

such that they are all the same for all probes and all

dividers. Then we should connect a short plate to the

loading point and adjust the gains of the two signal

processors such that the beam spot on the scope is brought

to point L or 2= O point on the Smith chart. This will then

complete the calibration of the system.

The signal processors implementing equations (9-1) to

(9-5) should not be very complicated because only

V,+, –,x, + are involved. Either digital or analog

processors can be used to implement these equations.

Digital displays instead of polar-display oscilloscopes can

also be used to read out ~ or i? accurately. The main factor

that may affect the accuracy of the measurements should

be the dc signal processors used here because the mecha-

nical and the microwave structures of this system are

quite simple and quite symmetric. Probe-loading and

probe-coupling effects should not be a problem here be-

cause the coupling can be made very slight due to high

power level used.

IV. DISCUSSION AND CONCLUSION

From a mathematical point of view, generally, n equa-

tions are sufficient for solving n unknowns with possible

multiple roots. Therefore, two equations derived from two

fixed-probe outputs el, e2 should be adequate to solve two

unknowns kX, kY at a fixed frequency. But not only is it

difficult to implement kX, kY algebraically from the probe

outputs el, ez but also, as it is shown in Fig. 3, double

solutions occur. Therefore, we add a third equation de-

rived from a third probe added to the system for eliminat-

ing this mathematical difficulty as well as the double-root

ambiguity as explained in Section II. On the other hand,

this three-probe system is actually an overdetermined

system as explained in footnote no. 4. Therefore, in princi-

ple, three unknowns, kX, kY, and O should be solvable

fi-om the three equations (l)–(3) in terms of el, ez, es

which would suggest that we could build a swept-frequency

scheme using only three probes. But, in reality, 0 is again

very difficult to solve from ( 1)– (3), and again, multiple

roots occur. Therefore, we add a fourth equation derived

from a fourth probe for solving the three unknowns

kX, kY, O in terms of el,ez, es, ed. The trend of develop-

ment is such that, using the present geometrical method,

we can see clearly where the uniqueness ambiguities arise

and where the algebraic difficulties lie. Furthermore, we

can also see easily from this geometrical method how to

overcome these ambiguities and these algebraic difficulties
by adding more and more probes to the system. That is,

we can use the “oversupply” of probe detected data to

“trade off” these design problems when higher and higher

system performances are demanded. These “tradeoff” ad-

vantages may be very difficult to discover if one uses
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algebraic methods alone. This may be the main advantage

of the present geometrical method.

As reported here, following this geometrical method,

two practical systems for automatic measurements of 2 are

designed here. One can be used under fixed but adjustable

frequency, swept-power conditions, and the other, under

swept -frequency, swept-power conditions. The band-

widths of both these systems should be about the same as

those of the waveguides themselves if the probe loading is

very slight. These systems can be used in either high-power

or low-power levels as long as the probes can pick up

enough signals without loading the waveguide. Also fol-

lowing this new method, further generalization of the

system may be reached. For example, we may use differ-

ent probe arrangements on a “loop line” for measuring

the transfer functions or the scattering matrix of an un-

known microwave component, or, we may use more probes

to check and to enhance the measurement accuracy.
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Corporate and Tandem Structures for
Combining Power from 3~

and 2N+ 1 Oscillators

SHIZUO MIZUSHINA, MEMBER lEEE, HIROSHI KONDOH, AND MltTSUAKI ASHIKI

Abstract-T’he output power from three Gmm osciffators was eomtdmed

using a short-slot coupler in conjunction with high-level injection locking

with the power mmb~ efficiency of ahout 100 percent at 9.7 GHz.

Using the 3-oscfffator structare as the building bl~ we constructed

(3Z = )9-oscillator corporate structure and (2X4+1=)9- and (2X6+1

= )13-nacWator tandem stmctures to demonstrate power combining ef-

ficiencies of 92,95, aad 93 percen~ respectively, at 9.6 GHs.

INTRODUCTION

v ARIOUS TECHNIQUES for combining power from

microwave solid-state sources have been described by

many authors over the years [ 1]– [9]. Some of the tech-

niques, most notably, the single-cavity-multiple-device
techniques reported by Kurokawa and Magalhaes [2] and

by Harp and Stover [3], have gained practical importance

to fulfill a class of communication and radar transmitter

requirements during the last several years. Nevertheless, it

is always interesting to explore new high-efficiency power
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Fig. 1. (a) A 3-oscillator structure using a hybrid coupler. (b) A short-
slot coupler used in the present work.

combining techniques that would offer possibilities of

achieving higher power at higher frequencies. This paper
describes a new method of combining power from multi-
ple oscillators using short-slot couplers [10] in conjunction

with high-level injection locking.

PRINCIPLES

Three identical oscillators and a matched load are con-

nected to a four-port hybrid coupler to form a 3-oscillator

structure, as shown in Fig. l(a), which is the building

block of our power combining structures. The coupler

0018-9480/80/ 1200-1428$00.7501980 IEEE


