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A Novel Approach to the Design of
Multiple-Probe High-Power Microwave
Automatic Impedance Measuring Schemes

CHIA-LUNJ. HU

Abstract—Starting with a modified look at the phasor diagram of a
multiple-probe system on a lossless waveguide, one can attain a geometri-
cal method for designing various direct-reading microwave impedance-
measuring schemes using fixed probes. This geometrical method will
bypass a significant amount of algebraic complexity as encountered in
classical algebraic methods. Hence it allows one to visualize the physical
picture more clearly and guides one to modify the design more effectively
to meet higher performance demands. This article reports a trend of design
developments derived from this new point of view. It starts with the
analysis of a two-probe system for measuring an unknown impedance Z.
This is followed by modifications on the design guided by the new
geometrical technique. Finally, two practical designs are derived for mea-
suring an unknown microwave impedance automatically. One is to be used
under fixed-frequency, swept-power conditions, and the other, under
swept-frequency, swept-power conditions. These systems require only inex-
pensive low-frequency signal processors (either analog or digital) and fixed
multiple probes. The output can be either analog with polar display or
digital with accurate readouts. To the author’s knowledge, these designs
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have not been derived in the past using multiple probes. A critical review
on all multiple-probe systems reported in the literature is also discussed
with their comparison to the present system.

I. INTRODUCTION—BACKGROUND SURVEY

ULTIPLE PROBES mounted on a lossless wave-

guide terminated by an unknown impedance Zz
have been used or proposed by many investigators to
obtain data for calculating both phase and magnitude of
the unknown complex z. Samuel in 1947 [1] used two pairs
of equidistant (Ag/4) probes interlaced by Ag/8 to mea-
sure and to display the impedance on an oscilloscope. He
applied V,-V; and V,-¥, to the vertical and horizontal
inputs of an oscilloscope, respectively, where V,,V,, V3, V,
are square-law diode outputs from the probes. Although
in his measurements the frequency was varied such that
the impedance was traced as a curve on the oscilloscope,
his scheme was actually derived from fixed-frequency
assumptions. That is, he assumed that the angular dis-
tance between any adjacent probes is always kept at Ag/8
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even when the frequency is swept. Ginzton reported in his
book [2] an unpublished scheme used in 1945 by G. H.
Taylor which is physically similar to Samuel’s scheme—
four equidistant probes separated by Ag/8. But he used
the ratio of, not the difference between, the probe-detected
outputs to calculate the z. A chart was made for reading
out the unknown 7 from these ratios detected at a fixed
frequency. Duffin in 1952 [3] published still another simi-
lar scheme using three fixed probes separated by Ag/8.
He then derived algebraically a set of equations for calcu-
lating the magnitude of Z and the imaginary part of Z from
the probe detected data V,/V, and V;/V,. Again, be-
cause of the restriction of Ag/8 between adjacent probes,
this scheme is also restricted to fixed-frequency measure-
ments. In 1952, King [4] generalized the Taylor’s four-
probe scheme by analyzing the ratio between the outputs
V1, V, of two fixed probes arbitrarily spaced. He proved
algebraically that when this ratio is fixed, the trajectory of
z on a Smith chart is a circle. He then derived a four-probe
scheme which is quite similar to the one discussed in
Ginzton’s book. In 1962, Chamberlain et al. [5] proposed
a scheme using three equidistant probes with arbitrary
spacing between the probes. He then arrived at a set of
equations for calculating 7 from the probe outputs at a
fixed frequency. But when he proposed a signal-processing
system to calculate the unknown z from the probe out-
puts, he missed a very important point—he neglected the
phase distance between the loading point and the
probes—which will lead to serious errors in the measure-
ments. Hence, his scheme was never reported in the
literature to show successful measurements. This point
can be clearly seen from the geometrical method dis-
cussed in Section II when we design the fixed-frequency
scheme.

Since 1962, there has been hardly any significant publi-
cation concerning multiple-probe schemes. A probable
reason for this is that all the above investigators used
algebraic methods to analyze the multiple-probe systems.
These methods become very complicated when the probe
separation is arbitrary and when the frequency is swept.
Hence, most of these schemes are restricted to simple
probe separations, for example, Ag/8. Consequently, most
of these systems can only be used at a single “design
frequency.” On the other hand, we will see from Section
II that the fixed-frequency scheme reported in this article
is usable at any other fixed frequency after a simple
calibration. The reason that this and other more versatile
designs can be reached here is that a new method of
design derived from a paper published by this author in
1979 [6] bypasses this mathematical difficulty and pro-
vides more perceptive pictures and easier ways to design
the system. In the following, we will start with a modified
look at the phasor analysis and from there we will derive a
geometrical method, in contrast to the algebraic methods
reported in the literature, for analyzing the z versus probe-
output relations.

Finally, two new practical designs are described. One is
a fixed- (but adjustable) frequency, swept-power z measur-
ing scheme. The other, a swept-power, swept-frequency, Z
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measuring scheme. Both can be used at low and high
power levels.

II. GEOMETRICAL APPROACH AND
FIxED-FREQUENCY, SWEPT-POWER,
DIRECT-READING, Z MEASURING SCHEME

If a lossless waveguide is connected between an un-
known impedance Z and a generator G, and if two fixed
probes 1,2 are used to sample the E fields in the wave-
guide as shown in Fig. 1, then in principle, one can
calculate both the magnitude and the phase of Z from the
sampled field strengths E,, E, (or E}, E} if square-law
diodes are used) as shown in the modified phasor diagram
of Fig. 2. In this figure, we have normalized the scale such
that the forward-wave field in the waveguide is always
represented by a unit-length phasor, and particularly, the
forward field E; at the loading point L is represented by
the horizontal unit phasor L0. Then, if the reflected field
at the loading point is represented by OR, we can keep OR
fixed (in contrast to the conventional phasor analysis that
one usually keeps the forward field LO fixed), and rotate
L0 clockwise to 10 with arc L1 equal to 28/, where 8/, is
the one-way phase difference between point 1 and point L
in Fig. 1. The magnitude of the phasor IR=10+0R=
(forward field +reflected field),; e 1 Will then be equal
to E, as detected by probe 1. Similarly, the magnitude of
2R will be equal to E, as detected by probe 2. Now since
points L,1,2 are fixed on the circle, and E,, E, are mea-
sured, point R, or the reflected field OR at the loading
point, can be determined geometrically.! This reflected
field OR should be equal to the complex reflection coeffi-
cient k at the loading point since the forward field L0 at
the loading point is normalized to unity. Consequently, k
at the loading point can be determined geometrically
when E|, E, are measured from the probe outputs. Now,
if this phasor diagram is superimposed on a Smith chart
with the chart scaled and oriented in such a way that the

!The geometrical problem here is the following. Given two fixed
points 1, 2 and two fixed distances IR=E,, 2R=E,, find the unknown
point R. The way to solve this is to draw two circles with centers at
points 1, 2 and radii E,, E,. The intersecting point R of these two circles
is the unknown point R we want.
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Fig. 3. Uniqueness ambiguity for the two-probe system.
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Fig. 4. A three-probe fixed-frequency 7 measuring scheme.
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Fig. 5. Removal of the uniqueness ambiguity in the three-probe sys-
tem.

circumference of Fig. 2 coincides with the circumference
of the chart and the x-y coordinate? in Fig. 2 coincides
with the rectangular coordinate in the Smith chart, then
the k in Fig. 2 is just the k used in the Smith chart.
Consequently, the impedance read off on the chart under
point R (the tip of k in Fig. 2) will be equal to the
unknown impedance Z because the Smith chart is just a
transformation from k to z.

While this system for measuring Z appears to be simple
enough, there exists a uniqueness problem in the measure-
ments. Two circles will generally intersect at two points
and if the two intersecting points R and R’ of the two
intersecting circles happen to fall inside® the unit circle, as
shown in Fig. 3, then two reflection coefficients k and k'
or two possible unknown impedances z and z’ will be
obtained from only one set of probe outputs E,, E,.
Consequently, this two-probe system may give double
values for z under one set of measured probe data.

To remove this uniqueness ambiguity in the measure-
ments, we can add a third probe to the system as shown in
Fig. 4. The modified phasor diagram (similar to that of
Fig. 2) for this three-probe system is shown in Fig. 5,
where e, e,, e, are the normalized total ficlds measured
by probes 1, 2, and 3, respectively. (That is, e;=|E, /E|,

2x, y axes in Fig. 2 are the real and imaginary axes for expressing the
complex number k because the unit phasor E; (or L0) in Fig. 2 is along
the positive x (real) direction. Hence E, expressed in this x (real)-y
(imaginary) coordinate is just 1+;0, which is the reference phasor
required for expressing the complex k.

3If one intersecting point is inside the unit circle and one is outside,
then the k corresponding to the one outside the unit circle will have a
magnitude greater than unity which cannot be true for a passive load
because |k|< 1 must hold for a passive load. Therefore, only the inter-
secting point inside the unit circle can give us correct z, or the solution is
unique only if one intersecting point is inside the circle.
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Fig. 6. Modified pﬁasor diagram for calculating 7 from probe outputs
€y, e,, €.

etc., and E_f is the forward field at the loading point.) We
can see immediately now that the ambiguity of the double
solutions in Fig. 3 does not exist here anymore. Because
of the geometry of Fig. 5, we can see that a fixed-length e,
will allow only one point to be selected from the double
points R, R’ shown in Fig. 3 for determining the unknown
k. That is, three fixed distances 1R=e,, 2R=e,, 3R=e;
from three fixed points 1,2,3 will determine the position
of the unknown point R uniquely in the plane.* Therefore,
only one k or one Z can be determined from one set of
probe outputs e, e,, ;.

Now we would like to make a practical design based on
this three-probe system. That is, we would like first to
calculate k at the loading point analytically in terms of
e;,e,,e; and then to design some signal processors to
carry out this calculation and transform this calculated k
into Z automatically. In the following, we will first calcu-
late the components of k in terms of e, e,, e; using some
geometrical means. To simplify the calculation, let us -
assume that /, =/; in Fig. 4 such that in the modified
phasor diagram of Fig. 6, arc 12=arc 23=4. Let us then
draw a rectangular coordinate axes UV with 0U coincid-
ing with 02 as shown in Fig. 6. Then the components
k,, k, of k expressed in this coordinate system can be
calculated from e, e,, e; by noting that the vector equa-
tion 4—B=C is equivalent to the algebraic equation
(4,—B,)*+(4,—B,)* =|C|>. With this equation, we
see that the three vector equations 01 —0R =
R1,02—0R=R2,03—0R=R3 shown in Fig. 6 are equiva-
lent to the following algebraic equations, respectively:

(cos@—k, Y +(sinf—k, ) =e? ¢}
(1=K, +kl=e} )
(cos@—k, )’ +(—sinf—k, ) =e3. 3)

k,, k, can then be solved by applying the operations
(D+(3)—2(2), and (3)—(1) to these equations, with the

4There must, of course, exist a certain restraint among e, e, e;
because this is an overdetermined system. Three fixed distances from
three fixed points are actually more than those required to determine the
position of the unknown point R in the plane. But this “oversupply” of
data will remove the double-solution ambiguity as shown in Fig. 5.
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Fig. 7. A practical three-probe system for automatic Z measurements

at fixed frequencies.
following:
e?+e?2-2¢2
k,=——2"2=4,(V,+V,—2V, 4
u 4(1_cosg) u( 1 2 3) ( )
2,2
_e3—€ _
o 4sind _AU(V3 Vl) (5)

where ¥, ~e? are the square-law diode outputs from the
probes and A4, A, are two proportional constants if § or
the frequency f(§=2Bl=@4nl/V,)f) is kept unchanged in
the measurements.

Now if we design two signal processors to process the
probe outputs V), ¥,,V; according to (4), (5), and if the
output voltages k,, k, of these two processors are con-
nected, respectively, to the horizontal and the vertical
inputs of an oscilloscope as shown in Fig. 7, then the
displacement of the beam spot on the scope will be
proportional to phasor OR=k in Fig. 6 when OU,0V in
Fig. 6 are taken, respectively, as the horizontal and the
vertical directions of the scope. Thus with a proper
calibration and with a Smith chart properly oriented and
overlayed on the scope, we can use this displayed k to
read the unknown Z directly from the Smith chart. Notice
that it is L0, or 0X, not ouU, in Fig. 6 that must coincide
with the horizontal axis of the Smith chart, because OR, or
the reflected field E_, at the loading point, can be taken as
k only when LO, or the forward field E; at the loading
point, is taken as unity as shown in Fig. 6. Therefore, z
can be read off directly from the Smith chart overlay only
when this chart is rotated from the horizontal axis OU by
an angle equal to Z 2’0 as shown in both Figs. 6 and 7.°

To calibrate this system, we need to connect a sliding
short to the loading point L of Fig. 4. We can then adjust
the amplifier gains 4,, 4, in Fig. 7 such that when the
system is in calibration, the beam spot on the scope will
trace a curve exactly along the circumference of the Smith
chart as the sliding short is moved in and out. This is so
because 7=0 on the Smith chart is equivalent to point L

5Chamberlain’s scheme discussed in the Introduction (Section I) is
very similar to the three-probe scheme discussed here. His equations (6),
(7) are exactly the same as (4), (5) derived here, except that he did not
take the phase distance between the loading point and the central probe
into account. This phase distance is equal to 28(/, +/,)=7— £20L in

Fig. 6 here, and £2’0L is the angle of rotation of the Smith chart as .

described in the text. Consequently, Chamberlain’s proposed scheme
(never carried out experimentally) would not work in general for correct
measurements of Z if the rotation of the Smith chart were not carried
out.
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in Fig. 6 (=0 means that E, = —Ef or point R coincides
with point L in Fig. 6) and adjustment of the sliding short
is equivalent to the adjustment of Z28/, in Fig. 6. This, in
turn, is equivalent to the adjustment of the angle of
rotation of the Smith chart or adjustment of £2'0L=xw—
6 —2p1, = constant —2p/,. Consequently, when the chart is
fixed in place, adjustment of the sliding short will move
the beam spot along the circumference of the Smith chart
if the system is in calibration.

Notice that after this calibration process, we do not
have to normalize the probe outputs against the forward
field E; if the output power of the generator is very stable.
However, if the generator output power is not stable, such
that the forward field at the loading point during calibra-
tion is not the same as that during the Z measurements, or,
if we intend to sweep the power level for nonlinear Z
measurements, then we need to normalize the probe out-
puts. That is, we should use a directional coupler (or a
magic T as used in the swept-frequency scheme discussed
later in Section III) to sample the forward field E_Zf or the
square of the forward field Ef2 ~Vif a square-law diode is
used. We should then use this ¥} to divide all probe
outputs ¥,¥,,V; by means of analog dividers. The out-
puts of these dividers are then the “normalized” probe
outputs which should be constants and not be affected by
power fluctuation or sweeping of the power level when Z
and frequency are unchanged. Consequently, the Z mea-
surements will not depend on the power level when these
normalized probe outputs are used. The system can then
be used as a swept-power, fixed-frequency, direct-reading,
7 measuring scheme reusable at any fixed frequencies.®

III. SWEPT-FREQUENCY, SWEPT-POWER,
DIRECT-READING, IMPEDANCE-MEASURING SCHEME

If we can express components k,, k,, [where x, y are the
horizontal (real) and the vertical (imaginary) axes of the
Smith chart] of the loading point reflection coefficient k in
terms of the probe outputs e, independent of 8 or frequency
f(0=(4nl/V,)f), then we can design two signal processors
to calculate these k,, k, in terms of the probe outputs e;.
The outputs k,, k, of these processors can then be ap-
plied, respectively, to the horizontal and the vertical in-
puts of an oscilloscope. A Smith chart can be overlayed
on the scope in such a way that x, y axes of the Smith
chart coincide with the horizontal and the vertical direc-
tions of the scope, respectively. The beam spot on the
Smith chart will then indicate automatically the value of
the complex z at any frequency f if the scope is properly
calibrated. Consequently, in order to build a swept-
frequency z measuring scheme, we need to modify the
probe arrangement such that k,,k, can be expressed
directly as functions of probe outputs independent of the
frequency. To eliminate this frequency dependence, we

SWhen frequency changes, § or the proportional constants 4,,, 4, in
(4), (5) will change. Therefore, a recalibration of the system by varying
the amplifier gains 4,, 4, in Fig. 7 must be carried out for correct z
measurements at this new frequency.
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Fig. 8. Modified phasor diagram for the four-probe swept-frequency
scheme.

can add a fourth equidistant probe to the three-probe
system previously discussed and obtain from the probe
outputs e,, e;, e, another set of equations similar to (4),(5).
If 9 can be eliminated from these two sets of equations,
the components of k can be expressed directly in terms of
outputs e, e,, €5, e, of these probes without going through
8 or f. The following design analysis is based on this point
of view.

First, we notice that in the modified phasor diagram
(Fig. 8), L1=12=23=24=34=4 because of the equidis-
tance probes we used. Let us then define two rectangular
coordinate systems U-V and U'~F” such that OU coin-
cides with 02 and OU’ coincides with 03 as shown in Fig.
8. Then as we have seen, expressed in the U~V coordinate
system, components k,, k, of k at the loading point are
functions of e,, e,, €3, and 8 shown by (4), (5). Similarly
expressed in the u’—v’ coordinate, components &, k,, of k
can be calculated by the following equations which are
obtained from (4), (5) by replacing indices 1,2,3 with
2,3,4:

24,2 _9,2
ey te;—2e;

k! = 6
“  4(1—cosh) ©
2_ 2
,_ €176
°" 4sinf ° )

Now since k,, k, and k, k, are related by a rotation of
coordinates implemented by the following equations:

®)
©)

The angle 4, or cos §, can be solved in terms of e, e,, €3, €4
by substituting (4)—(6) into (8). Therefore, &, k, in (4), (5)
can be expressed in terms of e,, e,, ¢;, ¢, only, indepen-
dently of 8. These k,, k, can be rotated to &k, k, in the
x—y coordinate (the Smith chart coordinate) by the follow-
ing equations of rotation, with angle of rotation equal to
7—26 as shown in Fig. 8:

k,=—k,cos20—k sin20
k,=k,sin20—k,cos28.

k), =k, cosf—k, sind

ki =k,sinf+k,cosé.

(10)

(11)
Then we have k,, k,, the real and imaginary components
of k at the loading point expressed explicitly in terms of

probe outputs e, independent of 8 or frequency f as shown
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by the equation set (9) below:

e —e?
k. =k, (1—2cos’8)— 5—cos 6 (9-1)
2, sinfcos 0+ 2L (1-2c058)  (9-2)
, =2k, sinfcos -+ 4sin0( cos (9-
where
k= e? +e; —2e? ©93)
4(1—cos8)
cos 0_£_____ef tei—es—ed (9-4)
2(e§ —e32)
and
sinf="V1—cos?@ . (9-5)

It then appears to us that these equations may be used
directly to design signal processors for calculating k,, &k,
from e, e,,e;,¢, in a swept-frequency z measuring
scheme. But unfortunately there again exist three practical
problems. First, actually there should be * signs in front
of the square root of (9-5), or uniqueness ambiguity may
again arise. Second, when sin 8 in (9-2) or (1—cos#) in
(9-3) equals zero, the mathematical expression becomes
indefinite and not suitable for any signal processors. Third,
when e, =e;, cos § in (9-4) becomes indeterminable. How-
ever, all these difficulties can be overcome as explained in
the following.

First, if we choose the separation / between the adjacent
probes short enough such that 0 <6 <7 when frequency is
swept in the designated frequency range of the waveguide,
then sin# is always positive and greater than zero. There-
fore the “+4” sign of (9-5) should always be chosen as
shown. Also sin# and (1—cos#) will never be equal to
zero so that the second handicap will not occur under this
choice of /. As to the third difficulty, we see from the
geometry in Fig. 8, that if e, =e;, R point is on the
dividing line of £203, or £104. Therefore, e, =e, must
also follow. Consequently, (9-4) becomes an indetermi-
nant form of 0/0. This is not suitable for any signal
processor. But it can be overcome by the following mod-
ification. Suppose we add still another equidistance probe,
probe 5, to the system as shown in the upper part of Fig.
9, then when e, =e; occurs, we can calculate § from the
outputs of e, to es instead of e, to e,. Because by the
geometry of Fig. 8, if R happens to fall on the dividing
line of £203, it will never fall on the dividing line of
£ 304. Therefore, e; 7 e, and cos # can be calculated by

24,2 _,2_,2
e; te; —e; —e;

2(e32——e42)

cosf=

instead of that given by (9-4). This switching action can
be implemented by the comparator and the analog
switches shown in the lower part of Fig. 9. When e, —e,
approaches zero, the comparator will yield an output
signal “high” to activate all the analog switches such that
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Fig. 9. A practical system for automatic 7 measurements at swept
frequencies and swept powers.

the cos# processor will process the inputs from e, to e
instead of e, to e4. The rest of the calculation or the data
processing are straightforward by following the other four
equations in (9). The outputs &, k,, of the second processor
in Fig. 9 can then be directly connected to the display
oscilloscope as shown in the lower part of Fig. 9 where the
x axis or LM in the Smith chart is set such that it
coincides with the horizontal axis of the oscilloscope. This
is a system capable of measuring 7 automatically when
frequency f is swept, because after a proper calibration,
the displacement of the beam spot on the scope is equal to
the & at the loading point under any frequency. Therefore,
the Z at any swept frequency can be read off directly from
the Smith chart.

To calibrate the system, we should first understand the
normalization process used in the system. The magic T
and probe 6 in the upper part of Fig. 9 are used for
normalizing the probe outputs as explained in the follow-
ing. The forward wave F coming from the generator will
be divided equally between arms a,, a, of the magic T,
but the reflected wave R from a, arm will not go into a,
because of the scattering property of the magic 7. Hence
Ve=V; will indirectly monitor the forward wave in the
main guide. Consequently, V5 can be used to normalize all
probe outputs in the main guide by analog dividers as
shown in the lower part of Fig. 9. A directional coupler is
not recommended for monitoring the forward wave be-
cause its frequency response does not match that of the
probes when the frequency is swept. On the other hand,
the frequency response of V; in arm a, shown in Fig. 9
should be exactly the same as those of ¥ to V; in arm a,
because of the geometrical symmetry of the magic 7.
Therefore, the normalization process here should be quite
independent of the frequency as well as the power when
the frequency or the power is swept. Consequently Fig. 9
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is a swept-frequency, swept-power, direct-reading, Z mea-
suring scheme,

To calibrate the system, we need to use a reflectionless
load connected to the loading point and adjust the probe
sensitivities as well as the divider amplification factors,
such that they are all the same for all probes and all
dividers. Then we should connect a short plate to the
loading point and adjust the gains of the two signal
processors such that the beam spot on the scope is brought
to point L or Z=0 point on the Smith chart. This will then
complete the calibration of the system.

The signal processors implementing equations (9-1) to
(9-5) should not be very complicated because only
V,+,—,X,+ are involved. Either digital or analog
processors can be used to implement these equations.
Digital displays instead of polar-display oscilloscopes can
also be used to read out k or 7 accurately. The main factor
that may affect the accuracy of the measurements should
be the dc signal processors used here because the mecha-
nical and the microwave structures of this system are
quite simple and quite symmetric. Probe-loading and
probe-coupling effects should not be a problem here be-
cause the coupling can be made very slight due to high
power level used.

IV. DiscussioN AND CONCLUSION

From a mathematical point of view, generally, n equa-
tions are sufficient for solving » unknowns with possible
multiple roots. Therefore, two equations derived from two
fixed-probe outputs e, e, should be adequate to solve two
unknowns k,, k, at a fixed frequency. But not only is it
difficult to implement &, k, algebraically from the probe
outputs e;, e, but also, as it is shown in Fig. 3, double
solutions occur. Therefore, we add a third equation de-
rived from a third probe added to the system for eliminat-
ing this mathematical difficulty as well as the double-root
ambiguity as explained in Section II. On the other hand,
this three-probe system is actually an overdetermined
system as explained in footnote no. 4. Therefore, in princi-
ple, three unknowns, k,,k,, and @ should be solvable
from the three equations (1)-(3) in terms of e e,, e;
which would suggest that we could build a swept-frequency
scheme using only three probes. But, in reality, ¢ is again
very difficult to solve from (1)—(3), and again, multiple
roots occur. Therefore, we add a fourth equation derived
from a fourth probe for solving the three unknowns
k., k,0 in terms of e,e,,e;, e,. The trend of develop-
ment is such that, using the present geometrical method,
we can see clearly where the uniqueness ambiguities arise
and where the algebraic difficulties lie. Furthermore, we
can also see easily from this geometrical method how to
overcome these ambiguities and these algebraic difficulties
by adding more and more probes to the system. That is,
we can use the “oversupply” of probe detected data to
“trade off” these design problems when higher and higher
system performances are demanded. These “tradeoff” ad-
vantages may be very difficult to discover if one uses
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algebraic methods alone. This may be the main advantage
of the present geometrical method.

As reported here, following this geometrical method,
two practical systems for automatic measurements of z are
designed here. One can be used under fixed but adjustable
frequency, swept-power conditions, and the other, under
swept-frequency, swept-power conditions. The band-
widths of both these systems should be about the same as
those of the waveguides themselves if the probe loading is
very slight. These systems can be used in either high-power
or low-power levels as long as the probes can pick up
enough signals without loading the waveguide. Also fol-
lowing this new method, further generalization of the
system may be reached. For example, we may use differ-
ent probe arrangements on a “loop line” for measuring
the transfer functions or the scattering matrix of an un-
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known microwave component, or, we may use more probes
to check and to enhance the measurement accuracy.
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Corporate and Tandem Structures for
Combining Power from 3%
and 2N-+1 Oscillators

SHIZUO MIZUSHINA, MEMBER, 1IEEE, HIROSHI KONDOH, anp MITSUAKI ASHIKI

Abstract—The output power from three Gunn oscillators was combined
using a short-slot coupler in conjunction with high-level injection locking
with the power combining efficiency of about 100 percent at 9.7 GHz.
Using the 3-oscillator structure as the building block, we constructed
(3% =)9-oscillator corporate structure and (2X4+1=)9- and (2Xx6+1
=)13-oscillator tandem structures to demonstrate power combining ef-
ficiencies of 92, 95, and 93 percent, respectively, at 9.6 GHz.

INTRODUCTION

ARIOUS TECHNIQUES for combining power from

microwave solid-state sources have been described by
many authors over the years [1]-[9]). Some of the tech-
niques, most notably, the single-cavity-multiple-device
techniques reported by Kurokawa and Magalhaes [2] and
by Harp and Stover [3], have gained practical importance
to fulfill a class of communication and radar transmitter
requirements during the last several years. Nevertheless, it
is always interesting to explore new high-efficiency power
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(a) (b)

(a) A 3-oscillator structure using a hybrid coupler. (b) A short-
slot coupler used in the present work.

Fig. 1.

combining techniques that would offer possibilities of
achieving higher power at higher frequencies. This paper
describes a new method of combining power from multi-
ple oscillators using short-slot couplers [10] in conjunction
with high-level injection locking.

PRINCIPLES

Three identical oscillators and a matched load are con-
nected to a four-port hybrid coupler to form a 3-oscillator
structure, as shown in Fig. 1(a), which is the building
block of our power combining structures. The coupler
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